

Development and reliability of a sport specific isometric strength test battery for para-kayak

Anna Bjerkefors^{1,2,} Matilda Ekman¹, Johanna S. Rosén¹

¹The Swedish School of Sport and Health Sciences (GIH), Biomechanics and Motor Control Laboratory ²Department of Neuroscience, Karolinska Institute Stockholm, Sweden

Paracanoe – debuted at the Paralympics in Rio 2016

Para-kayak

Para-va'a

Identify key biomechanical factors for performance

Whole body 3D kinematics

Joint angles for arm, trunk and legs: max, min, ROM

Kinematics and kinetics

Power output

N = 44 para-kayak athletes N = 10 able-bodied sprint kayak athletes

Correlations between power output and joint movements

		Μ	Males		Females	
		r-value	<i>p</i> -value	r-value	<i>p</i> -value	
Trunk	Trunk flexion _{Max}	0.802	<0.001	0.632	0.007	
	Trunk and pelvis rotation ROM	0.724	<0.001	0.847	<0.001	
Lower limbs	Hip flexion ROM	0.739	<0.001	0.898	<0.001	
	Knee flexion ROM	0.740	<0.001	0.866	<0.001	
	Ankle flexion ROM	0.670	< 0.001	0.774	< 0.001	

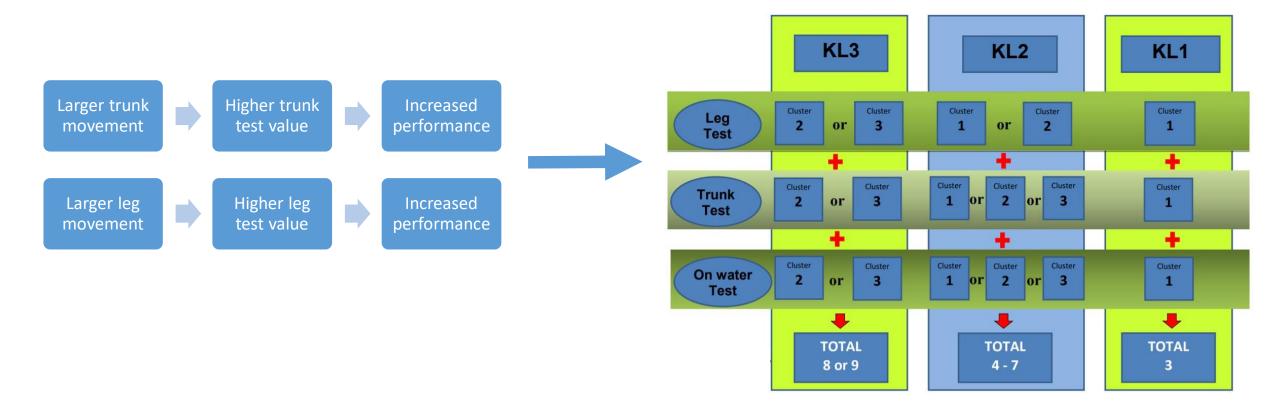
Develop measures of impairment

Trunk (42 tests) Manual muscle tests

Seated balance tests

Medical assessment

Leg (14 tests)
Sport specific leg tests


On-water (6 tests)

Trunk and leg function tests

Technical assessment

Relationship between key factors for performance, measures of impairment and performance

Paralympic para-kayak classification

Purpose

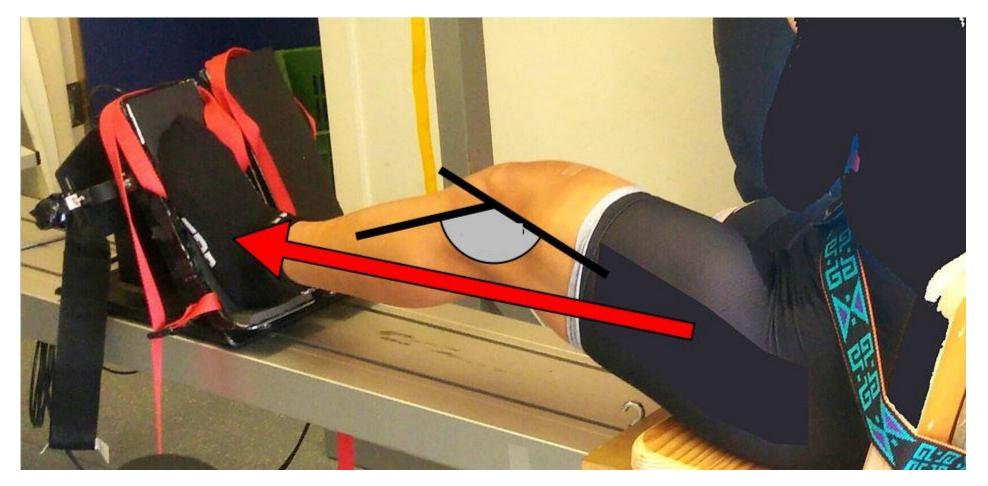
- to design and develop a test battery for measuring isometric strength in kayak specific positions
- to examine the reliability of this battery in able-bodied people

Method

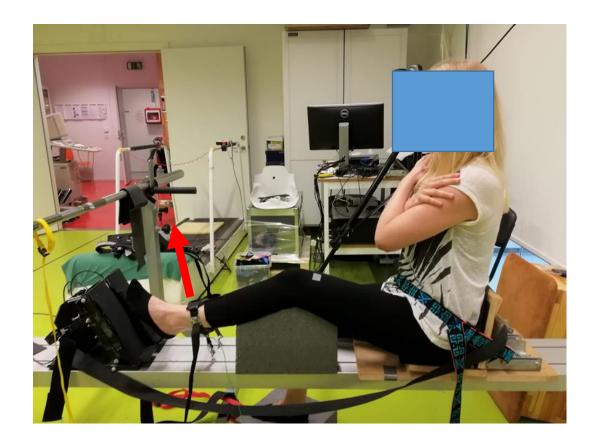
- Twelve able-bodied participants (ten females)
- Four isometric strength tests
 - leg press, knee extension, hip extension and trunk flexion
- Three maximal isometric contractions (5 s)
- 30 s rest between each trial
- 24 hours and a maximum of 7 days between the two occasions

Equipment

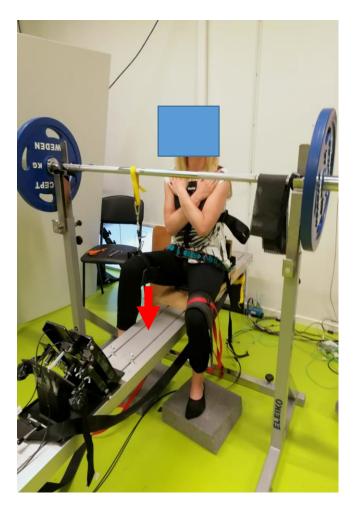
- 1D piezoelectric force transducer (9311B, Kistler; Switzerland)
- hip and knee extension, trunk flexion



- 3D piezoelectric force transducer (9347B, Kistler; Switzerland)
- leg press



Leg press


50° knee flexion

Knee extension

50° knee flexion

Hip extension

110° hip flexion

Trunk flexion

5° trunk flexion

The mean of three trials was used

2-way random effects, absolute agreement, single rater/measurement intra-class correlation coefficient (ICC_{2,1})

Student t-test - difference between test-retest values

Results

		Test occasion 1		Test occasion 2		ІСС	95% Cl
		±	SD	±	SD		
Leg press	Right	1330,9	310,0	1354,2	292,4	0,92	0,69-0,98
	Left	1354,0	294,5	1352,2	286,5	0,90	0,63-0,97
Hip extension	Right	292,0	93,0	290,7	101,2	0,96	0,88-0,99
	Left	277,7	91,7	272,0	80,7	0,96	0,85-0,99
Knee extension	Right	425,0	85,3	290,7	101,2	0,94	0,78-0,98
	Left	390,5	72,2	416,1	120,6	0,79	0,25-0,94
Trunk flexion		389,2	129,4	364,7	107,0	0,93	0,71-0,98

Results

		T1-T2 (N)	P-value
Leg press	Right	-23,3	0,67
	Left	1,7	0,98
Hip extension	Right	1,4	0,90
	Left	5,6	0,61
Knee extension	Right	-19,6	0,18
	Left	-25,6	0,33
Trunk flexion		24,5	0,24

Discussion

- Objective and reliable
- Training resistant?
- Enough for measuring trunk function?
- Relationship between the outcomes and performance?

Conclusion

Reliable method for evaluating kayak specific isometric strength in an able-bodied population

Thank you for your attention!

